2 research outputs found

    Nonlinear Mode Coupling and Internal Resonances in MoS2 Nanoelectromechanical System

    Full text link
    Atomically thin two dimensional (2D) layered materials have emerged as a new class of material for nanoelectromechanical systems (NEMS) due to their extraordinary mechanical properties and ultralow mass density. Among them, graphene has been the material of choice for nanomechanical resonator. However, recent interest in 2D chalcogenide compounds has also spurred research in using materials such as MoS2 for NEMS applications. As the dimensions of devices fabricated using these materials shrink down to atomically thin membrane, strain and nonlinear effects have become important. A clear understanding of nonlinear effects and the ability to manipulate them is essential for next generation sensors. Here we report on all electrical actuation and detection of few layers MoS2 resonator. The ability to electrically detect multiple modes and actuate the modes deep into nonlinear regime enables us to probe the nonlinear coupling between various vibrational modes. The modal coupling in our device is strong enough to detect three distinct internal resonances
    corecore